The Curse Of Soft Touch

Dr Andrew Marshall
• Consultant Clinical Neurophysiologist
 – SRFT / MFT

• Academic
 – UoM (Painful Diabetic Neuropathy and Neuropathy Diagnosis)
 – LJMU (Francis McGlone, Microneurography & Psychophysics)
 – WCFT/UoL (Manohar Sharma, Andreas Goebel)

• **Francis McGlone Microneurography – 7T grant**

• ‘**Developing a model to evaluate C-Tactile fibre contribution to allodynia and for testing new topical Medications – a microneurography and psychophysical study.**’ 2015

• ‘**Investigating the second order spinal projection pathway of C-Tactile afferents and their contribution to pain processing.**’ 2017
Soft Touch
Sensory receptor units in the human skin

Thick fast myelinated (Ab)
- ~35-60 m/s
- Mechanoreceptors
 - touch (SAI, SAI, RA)
 - vibration (Pacinian, Pc)
 - hair movements (Hair afferents)
Thin myelinated (Ad)
- ~5-35 m/s
- Temperature: cold
- Pain, Touch?

Slow unmyelinated (C)
- ~0.4 – 2.0 m/s
- Temperature: warm, cold
- Pain
- Low threshold mechanical (CT)
 - in hairy skin
 - cats, rodents, primates
 - man (1990s)

Fast and slow touch
How to Study C-Tactile Fibres

Psychophysics

Löken et al., Nature Neuroscience 2009
Thin (200 μm) tungsten electrode in contact with a single afferent nerve fiber.
Löken et al., Nature Neuroscience 2009
The "affective touch hypothesis"
CT afferents have a role to signal affective (pleasant, social, affective) aspects of light touch.

Löken et al., Nature Neuroscience 2009
Pharmacogenetic activation of Mrgprb4-expressing neurons in freely behaving mice promoted positively reinforcing and/or anxiolytic behaviour.

Pain modulatory role of C-LTMRs

A Specific Inhibitory Pathway between Substantia Gelatinosa Neurons Receiving Direct C-Fiber Input

Yan Lu and Edward R. Perl

Genetic identification of C fibres that detect massage–like stroking of hairy skin in vivo

Pharmacogenetic activation of Mrgprb4-expressing neurons in freely behaving mice promoted positively reinforcing and/or anxiolytic behaviour.

doi:10.1038/nature11810
Pain modulatory role of C-LTMRs

A Specific Inhibitory Pathway between Substantia Gelatinosa Neurons Receiving Direct C-Fiber Input

Pharmacogenetic activation of Mrgrp4-expressing neurons in freely behaving mice promoted positively reinforcing and/or anxiolytic behaviour.

Genetic identification of C fibres that detect massage-like stroking of hairy skin in vivo

Slow brush stimulation reduces adult pain
Liljencrantz et al 2017

Slow brush stimulation reduces neonatal pain ERP and heart rate
McGlone, Walker & Slater

Slow brush stimulation reduces adult pain
Liljencrantz et al 2017
C-tactile fibres and Pain

• Group of C-fibres, *C-tactile afferents*, that ‘signal’ positive hedonic aspects of touch
 – Anatomy and Physiology of C-tactile afferent pathways

• Evidence that these may modulate nociceptive pathways

• Selective activated these fibres may be useful in the treatment of some pain

• However...
The Curse
When Soft Touch Hurts
The Paradox that is Allodynia

- IASP definition
 - “Pain due to a stimulus that does not normally provoke pain”

Typically a burning, tender sensation during soft stroking of the affected skin
Mechanical Testing

MPS: Mechanical Pain Sensitivity

![Images of mechanical testing with Q-tip, cotton wool, and soft brush]

- **Tactile Allodynia**
 - Pain score (log10)
 - Q-tip, Cotton wool, Soft brush
 - Clinical vs Control

- **Mechanical Hyperalgesia**
 - Pain score (log10)
 - Mechanical Pinprick (mN)
 - Clinical vs Control
'makes its victim ward off his daughters embrace 'as though it were an enemy's blow'
When Soft Touch Hurts
The Paradox that is Allodynia

- IASP definition
- “Pain due to a stimulus that does not normally provoke pain”

Typically a burning, tender sensation during soft stroking of the affected skin.

CT optimal stroking has similarities to that which evokes tactile allodynia.
Does CT touch paradoxically cause allodynia?

• Canonical view
 – Allodynia due to rerouting of A-beta touch inputs in the spinal cord dorsal horn

• Emerging view
 – A-beta nerve block
 – Sensory testing and neuroimaging in patients lacking A-beta fibres
 – CT afferents play a role
Does CT touch paradoxically cause allodynia?

- Canonical view
 - Allodynia due to rerouting of A-beta touch inputs in the spinal cord dorsal horn
- Emerging view
 - A-beta nerve block
 - Sensory testing and neuroimaging in patients lacking A-beta fibres
 - CT afferents play a role
 - **Need a model of CT afferent block**
Developing a model to evaluate C-Tactile fibre contribution to allodynia and for testing new topical Medications – a microneurography and psychophysical study

- Aim to differentially block CT afferents using non-invasive delivery of Lidocaine
- Part 1
 - Quantitative Sensory Testing
 - 20 participants
 - Control versus Lidocaine
 - Iontophoresis
Developing a model to evaluate C-Tactile fibre contribution to allodynia and for testing new topical Medications – a microneurography and psychophysical study

- Aim to differentially block CT afferents using non-invasive delivery of Lidocaine
 - Quantitative Sensory Testing
 - Elevated mechanical detection threshold
 - CT touch not altered
Developing a model to evaluate C-Tactile fibre contribution to allodynia and for testing new topical Medications – a microneurography and psychophysical study

• Aim to differentially block CT afferents using non-invasive delivery of Lidocaine
 – Quantitative Sensory Testing
 • Elevated mechanical detection threshold
 • CT touch not altered
• Suggests not pure CT afferent blockade
Developing a model to evaluate C-Tactile fibre contribution to allodynia and for testing new topical Medications – a microneurography and psychophysical study

• Aim to differentially block CT afferents using non-invasive delivery of Lidocaine
• Part 2
 – Microneurography
 – To confirm inferences of QST
 • 35 experiments
 • High failure rate initially
Developing a model to evaluate C-Tactile fibre contribution to allodynia and for testing new topical Medications – a microneurography and psychophysical study

• Aim to differentially block CT afferents using non-invasive delivery of Lidocaine

• Part 2
 – Microneurography
 – To confirm inferences of QST
 • 30-40 experiments
 • High failure rate initially
Developing a model to evaluate C-Tactile fibre contribution to allodynia and for testing new topical Medications – a microneurography and psychophysical study

• Aim to differentially block CT afferents using non-invasive delivery of Lidocaine

• Part 2
 – Microneurography
 – To confirm inferences of QST
 • 30-40 experiments
 • High failure rate initially
Developing a model to evaluate C-Tactile fibre contribution to allodynia and for testing new topical Medications – a microneurography and psychophysical study

• Aim to differentially block CT afferents using non-invasive delivery of Lidocaine

• Part 2
 – Microneurography
 – To confirm inferences of QST
 • 30-40 experiments
 • High failure rate initially
Pharmaco-microneurography

• Iontophoresis experiments
 – Lidocaine +/- adrenaline into unit receptive field
 – Most touch fibre types unaffected, some still to be analysed

• Hair Follicle Afferents, Field Units, SA2

![Pre-lidocaine](image1)

SA1 Fibre

![Post-lidocaine](image2)
Pharmaco-microneurography

• Iontophoresis experiments
 – Lidocaine +/- adrenaline into unit receptive field
 – Most touch fibre types unaffected, some still to be analysed

• Hair Follicle Afferents, Field Units, SA2

Post-lidocaine

SA1 Fibre
Pharmaco-microneurography

• Iontophoresis experiments
 – Lidocaine +/- adrenaline into unit receptive field
 – Most touch fibres unaffected, some still to be analysed

• Hair Follicle Afferents, Field Units, SA2
Pharmaco-microneurography

• Iontophoresis experiments
 – Lidocaine +/- adrenaline into unit receptive field

- Previously suggested that ‘Blocking Piezo 2 is a candidate for treating Allodynia’
 - Opportunity for other agents / ligands...
‘Investigating the second order spinal projection pathway of C-Tactile afferents and their contribution to pain processing.’

- **C-Tactile pathways**
 - Peripheral nerve
 - C-fibre
 - Cortical targets
 - Dorsal Posterior Insula Cortex
 - Brain region also important for pain processing

Olausson et al, Nature Neurosci 2002, 5, 900-4
‘Investigating the second order spinal projection pathway of C-Tactile afferents and their contribution to pain processing.’

- C-Tactile pathways
 - Peripheral nerve
 - Cortical targets
 - Spinal pathway unknown

 - All available evidence suggests that CT afferents should project alongside ‘pain’ fibres in the ‘spinothalamic tract’
‘Investigating the second order spinal projection pathway of C-Tactile afferents and their contribution to pain processing.’

• Anterolateral C1/C2 cordotomy under light sedation (Manohar Sharma)
• Hypothesis: Cordotomy will disrupt CT pathways
• Psychophysics

• Total/sub-total loss of cold/warm sensation, itch and pain contralateral to cordotomy

HSAN-V
‘Investigating the second order spinal projection pathway of C-Tactile afferents and their contribution to pain processing.’

- Anterolateral C1/C2 cordotomy under light sedation (Manohar Sharma)
- Hypothesis: Cordotomy will disrupt CT pathways
- Psychophysics

• Total/sub-total loss of cold/warm sensation, itch and pain contralateral to cordotomy
• **No change in measures of pleasant touch**
• Stroking felt as less intense

![Contrast showing margin of dural sac](image)
Created a bit of a puzzle...

- Incomplete interruption of spinothalamic tract?
- CT pathway has been interrupted and patients are relying on A-beta touch fibres?
- There is a different pathway?
- The spinal cord is not just a passive conduit
 - Processing and integration of A-beta, CT and noxious range (i.e. ‘pain’) touch fibres
- Requires somatosensory mapping and physiological testing
‘Investigating the second order spinal projection pathway of C-Tactile afferents and their contribution to pain processing.’

- Anterolateral C1/C2 cordotomy under light sedation
- Psychophysics
- C-Tactile function and Pain

- Spinal and Brain imaging
 - Volumetric
 - Brain fMRI
 - DTI
- Psychophysiology (GSR, HRV)
‘Investigating the second order spinal projection pathway of C-Tactile afferents and their contribution to pain processing.’

Hypothesis: CT fibres travel with ‘pain’ fibres and will be disrupted by cordotomy. CT touch will result in...
- Less activation of DPIns
- Attenuated heart rate deceleration

- Compare Right and Left
- Compare with painful mechanical stimulation

• Spinal and Brain imaging
 • Volumetric
 • Brain fMRI
 • DTI
• Psychophysiology (GSR, HRV)
Thank you!